By apacheCreated 16 days ago
starstarstarstarstar

MCP Server for Apache Doris, an MPP-based real-time data warehouse.

Visit Project
Share this MCP:
X (Formerly Twitter)RedditblueskyThreads by Instagram

Category

Official MCP Server

Tags

Data WarehouseApache DorisMppSql ExecutorDatabase Tool

Doris MCP Server

Doris MCP (Model Context Protocol) Server is a backend service built with Python and FastAPI. It implements the MCP, allowing clients to interact with it through defined "Tools". It's primarily designed to connect to Apache Doris databases, potentially leveraging Large Language Models (LLMs) for tasks like converting natural language queries to SQL (NL2SQL), executing queries, and performing metadata management and analysis.

๐Ÿš€ What's New in v0.4.2

  • ๐Ÿ”’ Enhanced Security Framework: Comprehensive SQL security validation with configurable blocked keywords, SQL injection protection, and unified security configuration management
  • ๐Ÿ› ๏ธ Connection Stability Improvements: Fixed critical at_eof connection errors with advanced connection health monitoring, automatic retry mechanisms, and proactive connection cleanup
  • โš™๏ธ Flexible Security Configuration: Environment variable support for security policies (BLOCKED_KEYWORDS, ENABLE_SECURITY_CHECK) with unified configuration architecture eliminating code duplication
  • ๐ŸŽฏ Centralized Configuration Management: All security keywords now managed through single configuration source with consistent enforcement across all components
  • ๐Ÿ”ง MCP Version Compatibility: Resolved MCP library version conflicts with intelligent compatibility layer supporting both MCP 1.8.x and 1.9.x versions
  • ๐Ÿš€ Production Reliability: Enhanced error handling, connection diagnostics, and automatic recovery from database connection issues

๐Ÿ”ง Key Improvements: Resolved connection stability issues, unified security keyword management, added comprehensive environment variable configuration for security policies, and fixed MCP library version compatibility conflicts.

Core Features

  • MCP Protocol Implementation: Provides standard MCP interfaces, supporting tool calls, resource management, and prompt interactions.
  • Streamable HTTP Communication: Unified HTTP endpoint supporting both request/response and streaming communication for optimal performance and reliability.
  • Stdio Communication: Standard input/output mode for direct integration with MCP clients like Cursor.
  • Enterprise-Grade Architecture: Modular design with comprehensive functionality:
    • Tools Manager: Centralized tool registration and routing with unified interfaces (doris_mcp_server/tools/tools_manager.py)
    • Enhanced Monitoring Tools Module: Advanced memory tracking, metrics collection, and flexible BE node discovery with modular, extensible design
    • Query Information Tools: Enhanced SQL explain and profiling with configurable content truncation, file export for LLM attachments, and advanced query analytics
    • Resources Manager: Resource management and metadata exposure (doris_mcp_server/tools/resources_manager.py)
    • Prompts Manager: Intelligent prompt templates for data analysis (doris_mcp_server/tools/prompts_manager.py)
  • Advanced Database Features:
    • Query Execution: High-performance SQL execution with advanced caching and optimization, enhanced connection stability and automatic retry mechanisms (doris_mcp_server/utils/query_executor.py)
    • Security Management: Comprehensive SQL security validation with configurable blocked keywords, SQL injection protection, data masking, and unified security configuration management (doris_mcp_server/utils/security.py)
    • Metadata Extraction: Comprehensive database metadata with catalog federation support (doris_mcp_server/utils/schema_extractor.py)
    • Performance Analysis: Advanced column analysis, performance monitoring, and data analysis tools (doris_mcp_server/utils/analysis_tools.py)
  • Catalog Federation Support: Full support for multi-catalog environments (internal Doris tables and external data sources like Hive, MySQL, etc.)
  • Enterprise Security: Comprehensive security framework with authentication, authorization, SQL injection protection, and data masking capabilities with environment variable configuration support
  • Unified Configuration Framework: Centralized configuration management through config.py with comprehensive validation, standardized parameter naming, and smart default database handling with automatic fallback to information_schema

System Requirements

  • Python 3.12+
  • Database connection details (e.g., Doris Host, Port, User, Password, Database)

๐Ÿš€ Quick Start

Installation from PyPI

# Install the latest version
pip install mcp-doris-server

# Install specific version
pip install mcp-doris-server==0.4.2

๐Ÿ’ก Command Compatibility: After installation, both doris-mcp-server and mcp-doris-server commands are available for backward compatibility. You can use either command interchangeably.

Start Streamable HTTP Mode (Web Service)

The primary communication mode offering optimal performance and reliability:

# Full configuration with database connection
doris-mcp-server \
    --transport http \
    --host 0.0.0.0 \
    --port 3000 \
    --db-host 127.0.0.1 \
    --db-port 9030 \
    --db-user root \
    --db-password your_password 

Start Stdio Mode (for Cursor and other MCP clients)

Standard input/output mode for direct integration with MCP clients:

# For direct integration with MCP clients like Cursor
doris-mcp-server --transport stdio

Verify Installation

# Check installation
doris-mcp-server --help

# Test HTTP mode (in another terminal)
curl http://localhost:3000/health

Environment Variables (Optional)

Instead of command-line arguments, you can use environment variables:

export DORIS_HOST="127.0.0.1"
export DORIS_PORT="9030"
export DORIS_USER="root"
export DORIS_PASSWORD="your_password"

# Then start with simplified command
doris-mcp-server --transport http --host 0.0.0.0 --port 3000

Command Line Arguments

The doris-mcp-server command supports the following arguments:

Argument Description Default Required
--transport Transport mode: http or stdio http No
--host HTTP server host (HTTP mode only) 0.0.0.0 No
--port HTTP server port (HTTP mode only) 3000 No
--db-host Doris database host localhost No
--db-port Doris database port 9030 No
--db-user Doris database username root No
--db-password Doris database password - Yes (unless in env)

Development Setup

For developers who want to build from source:

1. Clone the Repository

# Replace with the actual repository URL if different
git clone https://github.com/apache/doris-mcp-server.git
cd doris-mcp-server

2. Install Dependencies

pip install -r requirements.txt

3. Configure Environment Variables

Copy the .env.example file to .env and modify the settings according to your environment:

cp .env.example .env

Key Environment Variables:

  • Database Connection:
    • DORIS_HOST: Database hostname (default: localhost)
    • DORIS_PORT: Database port (default: 9030)
    • DORIS_USER: Database username (default: root)
    • DORIS_PASSWORD: Database password
    • DORIS_DATABASE: Default database name (default: information_schema)
    • DORIS_MIN_CONNECTIONS: Minimum connection pool size (default: 5)
    • DORIS_MAX_CONNECTIONS: Maximum connection pool size (default: 20)
    • DORIS_BE_HOSTS: BE nodes for monitoring (comma-separated, optional - auto-discovery via SHOW BACKENDS if empty)
    • DORIS_BE_WEBSERVER_PORT: BE webserver port for monitoring tools (default: 8040)
  • Security Configuration:
    • AUTH_TYPE: Authentication type (token/basic/oauth, default: token)
    • TOKEN_SECRET: Token secret key
    • ENABLE_SECURITY_CHECK: Enable/disable SQL security validation (default: true, New in v0.4.2)
    • BLOCKED_KEYWORDS: Comma-separated list of blocked SQL keywords (New in v0.4.2)
    • ENABLE_MASKING: Enable data masking (default: true)
    • MAX_RESULT_ROWS: Maximum result rows (default: 10000)
  • Performance Configuration:
    • ENABLE_QUERY_CACHE: Enable query caching (default: true)
    • CACHE_TTL: Cache time-to-live in seconds (default: 300)
    • MAX_CONCURRENT_QUERIES: Maximum concurrent queries (default: 50)
    • MAX_RESPONSE_CONTENT_SIZE: Maximum response content size for LLM compatibility (default: 4096, New in v0.4.0)
  • Logging Configuration:
    • LOG_LEVEL: Log level (DEBUG/INFO/WARNING/ERROR, default: INFO)
    • LOG_FILE_PATH: Log file path
    • ENABLE_AUDIT: Enable audit logging (default: true)

Available MCP Tools

The following table lists the main tools currently available for invocation via an MCP client:

Tool Name Description Parameters
exec_query Execute SQL query and return results. sql (string, Required), db_name (string, Optional), catalog_name (string, Optional), max_rows (integer, Optional), timeout (integer, Optional)
get_table_schema Get detailed table structure information. table_name (string, Required), db_name (string, Optional), catalog_name (string, Optional)
get_db_table_list Get list of all table names in specified database. db_name (string, Optional), catalog_name (string, Optional)
get_db_list Get list of all database names. catalog_name (string, Optional)
get_table_comment Get table comment information. table_name (string, Required), db_name (string, Optional), catalog_name (string, Optional)
get_table_column_comments Get comment information for all columns in table. table_name (string, Required), db_name (string, Optional), catalog_name (string, Optional)
get_table_indexes Get index information for specified table. table_name (string, Required), db_name (string, Optional), catalog_name (string, Optional)
get_recent_audit_logs Get audit log records for recent period. days (integer, Optional), limit (integer, Optional)
get_catalog_list Get list of all catalog names. random_string (string, Required)
get_sql_explain Get SQL execution plan with configurable content truncation and file export for LLM analysis. sql (string, Required), verbose (boolean, Optional), db_name (string, Optional), catalog_name (string, Optional)
get_sql_profile Get SQL execution profile with content management and file export for LLM optimization workflows. sql (string, Required), db_name (string, Optional), catalog_name (string, Optional), timeout (integer, Optional)
get_table_data_size Get table data size information via FE HTTP API. db_name (string, Optional), table_name (string, Optional), single_replica (boolean, Optional)
get_monitoring_metrics_info Get Doris monitoring metrics definitions and descriptions. role (string, Optional), monitor_type (string, Optional), priority (string, Optional)
get_monitoring_metrics_data Get actual Doris monitoring metrics data from nodes with flexible BE discovery. role (string, Optional), monitor_type (string, Optional), priority (string, Optional)
get_realtime_memory_stats Get real-time memory statistics via BE Memory Tracker with auto/manual BE discovery. tracker_type (string, Optional), include_details (boolean, Optional)
get_historical_memory_stats Get historical memory statistics via BE Bvar interface with flexible BE configuration. tracker_names (array, Optional), time_range (string, Optional)

Note: All metadata tools support catalog federation for multi-catalog environments. The get_catalog_list tool requires a random_string parameter for compatibility reasons. Enhanced monitoring tools in v0.4.0 provide comprehensive memory tracking and metrics collection capabilities with flexible BE node discovery.

4. Run the Service

Execute the following command to start the server:

./start_server.sh

This command starts the FastAPI application with Streamable HTTP MCP service.

Service Endpoints:

  • Streamable HTTP: http://:/mcp (Primary MCP endpoint - supports GET, POST, DELETE, OPTIONS) * Health Check: http://:/health > Note: The server uses Streamable HTTP for web-based communication, providing unified request/response and streaming capabilities. ## Usage Interaction with the Doris MCP Server requires an MCP Client. The client connects to the server's Streamable HTTP endpoint and sends requests according to the MCP specification to invoke the server's tools. Main Interaction Flow: 1. Client Initialization: Send an initialize method call to /mcp (Streamable HTTP). 2. (Optional) Discover Tools: The client can call tools/list to get the list of supported tools, their descriptions, and parameter schemas. 3. Call Tool: The client sends a tools/call request, specifying the name and arguments. * Example: Get Table Schema * name: get_table_schema * arguments: Include table_name, db_name, catalog_name. 4. Handle Response: * Non-streaming: The client receives a response containing content or isError. * Streaming: The client receives a series of progress notifications, followed by a final response. ### Catalog Federation Support The Doris MCP Server supports catalog federation, enabling interaction with multiple data catalogs (internal Doris tables and external data sources like Hive, MySQL, etc.) within a unified interface. #### Key Features: * Multi-Catalog Metadata Access: All metadata tools (get_db_list, get_db_table_list, get_table_schema, etc.) support an optional catalog_name parameter to query specific catalogs. * Cross-Catalog SQL Queries: Execute SQL queries that span multiple catalogs using three-part table naming. * Catalog Discovery: Use mcp_doris_get_catalog_list to discover available catalogs and their types. #### Three-Part Naming Requirement: All SQL queries MUST use three-part naming for table references: * Internal Tables: internal.database_name.table_name * External Tables: catalog_name.database_name.table_name #### Examples: 1. Get Available Catalogs: json { "tool_name": "mcp_doris_get_catalog_list", "arguments": {"random_string": "unique_id"} } 2. Get Databases in Specific Catalog: json { "tool_name": "mcp_doris_get_db_list", "arguments": {"random_string": "unique_id", "catalog_name": "mysql"} } 3. Query Internal Catalog: json { "tool_name": "mcp_doris_exec_query", "arguments": { "random_string": "unique_id", "sql": "SELECT COUNT(*) FROM internal.ssb.customer" } } 4. Query External Catalog: json { "tool_name": "mcp_doris_exec_query", "arguments": { "random_string": "unique_id", "sql": "SELECT COUNT(*) FROM mysql.ssb.customer" } } 5. Cross-Catalog Query: json { "tool_name": "mcp_doris_exec_query", "arguments": { "random_string": "unique_id", "sql": "SELECT i.c_name, m.external_data FROM internal.ssb.customer i JOIN mysql.test.user_info m ON i.c_custkey = m.customer_id" } } ## Security Configuration The Doris MCP Server includes a comprehensive security framework that provides enterprise-level protection through authentication, authorization, SQL security validation, and data masking capabilities. ### Security Features * ๐Ÿ” Authentication: Support for token-based and basic authentication * ๐Ÿ›ก๏ธ Authorization: Role-based access control (RBAC) with security levels * ๐Ÿšซ SQL Security: SQL injection protection and blocked operations * ๐ŸŽญ Data Masking: Automatic sensitive data masking based on user permissions * ๐Ÿ“Š Security Levels: Four-tier security classification (Public, Internal, Confidential, Secret) ### Authentication Configuration Configure authentication in your environment variables: bash # Authentication Type (token/basic/oauth) AUTH_TYPE=token # Token Secret for JWT validation TOKEN_SECRET=your_secret_key_here # Session timeout (in seconds) SESSION_TIMEOUT=3600 #### Token Authentication Example python # Client authentication with token auth_info = { "type": "token", "token": "your_jwt_token", "session_id": "unique_session_id" } #### Basic Authentication Example python # Client authentication with username/password auth_info = { "type": "basic", "username": "analyst", "password": "secure_password", "session_id": "unique_session_id" } ### Authorization & Security Levels The system supports four security levels with hierarchical access control: | Security Level | Access Scope | Typical Use Cases | |:---------------|:-------------|:------------------| | Public | Unrestricted access | Public reports, general statistics | | Internal | Company employees | Internal dashboards, business metrics | | Confidential | Authorized personnel | Customer data, financial reports | | Secret | Senior management | Strategic data, sensitive analytics | #### Role Configuration Configure user roles and permissions: python # Example role configuration role_permissions = { "data_analyst": { "security_level": "internal", "permissions": ["read_data", "execute_query"], "allowed_tables": ["sales", "products", "orders"] }, "data_admin": { "security_level": "confidential", "permissions": ["read_data", "execute_query", "admin"], "allowed_tables": ["*"] }, "executive": { "security_level": "secret", "permissions": ["read_data", "execute_query", "admin"], "allowed_tables": ["*"] } } ### SQL Security Validation The system automatically validates SQL queries for security risks: #### Blocked Operations Configure blocked SQL operations using environment variables (New in v0.4.2): bash # Enable/disable SQL security check (New in v0.4.2) ENABLE_SECURITY_CHECK=true # Customize blocked keywords via environment variable (New in v0.4.2) BLOCKED_KEYWORDS="DROP,DELETE,TRUNCATE,ALTER,CREATE,INSERT,UPDATE,GRANT,REVOKE,EXEC,EXECUTE,SHUTDOWN,KILL" # Maximum query complexity score MAX_QUERY_COMPLEXITY=100 Default Blocked Keywords (Unified in v0.4.2): - DDL Operations: DROP, CREATE, ALTER, TRUNCATE - DML Operations: DELETE, INSERT, UPDATE - DCL Operations: GRANT, REVOKE - System Operations: EXEC, EXECUTE, SHUTDOWN, KILL #### SQL Injection Protection The system automatically detects and blocks: * Union-based injections: UNION SELECT attacks * Boolean-based injections: OR 1=1 patterns * Time-based injections: SLEEP(), WAITFOR functions * Comment injections: --, /**/ patterns * Stacked queries: Multiple statements separated by ; #### Example Security Validation python # This query would be blocked dangerous_sql = "SELECT * FROM users WHERE id = 1; DROP TABLE users;" # This query would be allowed safe_sql = "SELECT name, email FROM users WHERE department = 'sales'" ### Data Masking Configuration Configure automatic data masking for sensitive information: #### Built-in Masking Rules python # Default masking rules masking_rules = [ { "column_pattern": r".*phone.*|.*mobile.*", "algorithm": "phone_mask", "parameters": { "mask_char": "*", "keep_prefix": 3, "keep_suffix": 4 }, "security_level": "internal" }, { "column_pattern": r".*email.*", "algorithm": "email_mask", "parameters": {"mask_char": "*"}, "security_level": "internal" }, { "column_pattern": r".*id_card.*|.*identity.*", "algorithm": "id_mask", "parameters": { "mask_char": "*", "keep_prefix": 6, "keep_suffix": 4 }, "security_level": "confidential" } ] #### Masking Algorithms | Algorithm | Description | Example | |:----------|:------------|:--------| | phone_mask | Masks phone numbers | 138****5678 | | email_mask | Masks email addresses | j***n@example.com | | id_mask | Masks ID card numbers | 110101****1234 | | name_mask | Masks personal names | ๅผ *ๆ˜Ž | | partial_mask | Partial masking with ratio | abc***xyz | #### Custom Masking Rules Add custom masking rules in your configuration: python # Custom masking rule custom_rule = { "column_pattern": r".*salary.*|.*income.*", "algorithm": "partial_mask", "parameters": { "mask_char": "*", "mask_ratio": 0.6 }, "security_level": "confidential" } ### Security Configuration Examples #### Environment Variables bash # .env file AUTH_TYPE=token TOKEN_SECRET=your_jwt_secret_key ENABLE_MASKING=true MAX_RESULT_ROWS=10000 BLOCKED_SQL_OPERATIONS=DROP,DELETE,TRUNCATE,ALTER MAX_QUERY_COMPLEXITY=100 ENABLE_AUDIT=true #### Sensitive Tables Configuration python # Configure sensitive tables with security levels sensitive_tables = { "user_profiles": "confidential", "payment_records": "secret", "employee_salaries": "secret", "customer_data": "confidential", "public_reports": "public" } ### Security Best Practices 1. ๐Ÿ”‘ Strong Authentication: Use JWT tokens with proper expiration 2. ๐ŸŽฏ Principle of Least Privilege: Grant minimum required permissions 3. ๐Ÿ” Regular Auditing: Enable audit logging for security monitoring 4. ๐Ÿ›ก๏ธ Input Validation: All SQL queries are automatically validated 5. ๐ŸŽญ Data Classification: Properly classify data with security levels 6. ๐Ÿ”„ Regular Updates: Keep security rules and configurations updated ### Security Monitoring The system provides comprehensive security monitoring: python # Security audit log example { "timestamp": "2024-01-15T10:30:00Z", "user_id": "analyst_user", "action": "query_execution", "resource": "customer_data", "result": "blocked", "reason": "insufficient_permissions", "risk_level": "medium" } > โš ๏ธ Important: Always test security configurations in a development environment before deploying to production. Regularly review and update security policies based on your organization's requirements. ## Connecting with Cursor You can connect Cursor to this MCP server using Stdio mode (recommended) or Streamable HTTP mode. ### Stdio Mode Stdio mode allows Cursor to manage the server process directly. Configuration is done within Cursor's MCP Server settings file (typically ~/.cursor/mcp.json or similar). ### Method 1: Using PyPI Installation (Recommended) Install the package from PyPI and configure Cursor to use it: bash pip install mcp-doris-server Configure Cursor: Add an entry like the following to your Cursor MCP configuration: json { "mcpServers": { "doris-stdio": { "command": "doris-mcp-server", "args": ["--transport", "stdio"], "env": { "DORIS_HOST": "127.0.0.1", "DORIS_PORT": "9030", "DORIS_USER": "root", "DORIS_PASSWORD": "your_db_password" } } } } ### Method 2: Using uv (Development) If you have uv installed and want to run from source: bash uv run --project /path/to/doris-mcp-server doris-mcp-server Note: Replace /path/to/doris-mcp-server with the actual absolute path to your project directory. Configure Cursor: Add an entry like the following to your Cursor MCP configuration: json { "mcpServers": { "doris-stdio": { "command": "uv", "args": ["run", "--project", "/path/to/your/doris-mcp-server", "doris-mcp-server"], "env": { "DORIS_HOST": "127.0.0.1", "DORIS_PORT": "9030", "DORIS_USER": "root", "DORIS_PASSWORD": "your_db_password" } } } } ### Streamable HTTP Mode Streamable HTTP mode requires you to run the MCP server independently first, and then configure Cursor to connect to it. 1. Configure .env: Ensure your database credentials and any other necessary settings are correctly configured in the .env file within the project directory. 2. Start the Server: Run the server from your terminal in the project's root directory: bash ./start_server.sh This script reads the .env file and starts the FastAPI server with Streamable HTTP support. Note the host and port the server is listening on (default is 0.0.0.0:3000). 3. Configure Cursor: Add an entry like the following to your Cursor MCP configuration, pointing to the running server's Streamable HTTP endpoint: json { "mcpServers": { "doris-http": { "url": "http://127.0.0.1:3000/mcp" } } } > Note: Adjust the host/port if your server runs on a different address. The /mcp endpoint is the unified Streamable HTTP interface. After configuring either mode in Cursor, you should be able to select the server (e.g., doris-stdio or doris-http) and use its tools. ## Directory Structure doris-mcp-server/ โ”œโ”€โ”€ doris_mcp_server/ # Main server package โ”‚ โ”œโ”€โ”€ main.py # Main entry point and FastAPI app โ”‚ โ”œโ”€โ”€ tools/ # MCP tools implementation โ”‚ โ”‚ โ”œโ”€โ”€ tools_manager.py # Centralized tools management and registration โ”‚ โ”‚ โ”œโ”€โ”€ resources_manager.py # Resource management and metadata exposure โ”‚ โ”‚ โ”œโ”€โ”€ prompts_manager.py # Intelligent prompt templates for data analysis โ”‚ โ”‚ โ””โ”€โ”€ __init__.py โ”‚ โ”œโ”€โ”€ utils/ # Core utility modules โ”‚ โ”‚ โ”œโ”€โ”€ config.py # Configuration management with validation โ”‚ โ”‚ โ”œโ”€โ”€ db.py # Database connection management with pooling โ”‚ โ”‚ โ”œโ”€โ”€ query_executor.py # High-performance SQL execution with caching โ”‚ โ”‚ โ”œโ”€โ”€ security.py # Security management and data masking โ”‚ โ”‚ โ”œโ”€โ”€ schema_extractor.py # Metadata extraction with catalog federation โ”‚ โ”‚ โ”œโ”€โ”€ analysis_tools.py # Data analysis and performance monitoring โ”‚ โ”‚ โ”œโ”€โ”€ logger.py # Logging configuration โ”‚ โ”‚ โ””โ”€โ”€ __init__.py โ”‚ โ””โ”€โ”€ __init__.py โ”œโ”€โ”€ doris_mcp_client/ # MCP client implementation โ”‚ โ”œโ”€โ”€ client.py # Unified MCP client for testing and integration โ”‚ โ”œโ”€โ”€ README.md # Client documentation โ”‚ โ””โ”€โ”€ __init__.py โ”œโ”€โ”€ logs/ # Log files directory โ”œโ”€โ”€ README.md # This documentation โ”œโ”€โ”€ .env.example # Environment variables template โ”œโ”€โ”€ requirements.txt # Python dependencies โ”œโ”€โ”€ pyproject.toml # Project configuration and entry points โ”œโ”€โ”€ uv.lock # UV package manager lock file โ”œโ”€โ”€ generate_requirements.py # Requirements generation script โ”œโ”€โ”€ start_server.sh # Server startup script โ””โ”€โ”€ restart_server.sh # Server restart script ## Developing New Tools This section outlines the process for adding new MCP tools to the Doris MCP Server, based on the unified modular architecture with centralized tool management. ### 1. Leverage Existing Utility Modules The server provides comprehensive utility modules for common database operations: * doris_mcp_server/utils/db.py: Database connection management with connection pooling and health monitoring. * doris_mcp_server/utils/query_executor.py: High-performance SQL execution with advanced caching, optimization, and performance monitoring. * doris_mcp_server/utils/schema_extractor.py: Metadata extraction with full catalog federation support. * doris_mcp_server/utils/security.py: Comprehensive security management, SQL validation, and data masking. * doris_mcp_server/utils/analysis_tools.py: Advanced data analysis and statistical tools. * doris_mcp_server/utils/config.py: Configuration management with validation. ### 2. Implement Tool Logic Add your new tool to the DorisToolsManager class in doris_mcp_server/tools/tools_manager.py. The tools manager provides a centralized approach to tool registration and execution with unified interfaces. Example: Adding a new analysis tool: python # In doris_mcp_server/tools/tools_manager.py async def your_new_analysis_tool(self, arguments: Dict[str, Any]) -> List[Dict[str, Any]]: """ Your new analysis tool implementation Args: arguments: Tool arguments from MCP client Returns: List of MCP response messages """ try: # Use existing utilities result = await self.query_executor.execute_sql_for_mcp( sql="SELECT COUNT(*) FROM your_table", max_rows=arguments.get("max_rows", 100) ) return [{ "type": "text", "text": json.dumps(result, ensure_ascii=False, indent=2) }] except Exception as e: logger.error(f"Tool execution failed: {str(e)}", exc_info=True) return [{ "type": "text", "text": f"Error: {str(e)}" }] ### 3. Register the Tool Add your tool to the _register_tools method in the same class: python # In the _register_tools method of DorisToolsManager @self.mcp.tool( name="your_new_analysis_tool", description="Description of your new analysis tool", inputSchema={ "type": "object", "properties": { "parameter1": { "type": "string", "description": "Description of parameter1" }, "parameter2": { "type": "integer", "description": "Description of parameter2", "default": 100 } }, "required": ["parameter1"] } ) async def your_new_analysis_tool_wrapper(arguments: Dict[str, Any]) -> List[Dict[str, Any]]: return await self.your_new_analysis_tool(arguments) ### 4. Advanced Features For more complex tools, you can leverage the comprehensive framework: * Advanced Caching: Use the query executor's built-in caching for enhanced performance * Enterprise Security: Apply comprehensive SQL validation and data masking through the security manager * Intelligent Prompts: Use the prompts manager for advanced query generation * Resource Management: Expose metadata through the resources manager * Performance Monitoring: Integrate with the analysis tools for monitoring capabilities ### 5. Testing Test your new tool using the included MCP client: python # Using doris_mcp_client/client.py from doris_mcp_client.client import DorisUnifiedMCPClient async def test_new_tool(): client = DorisUnifiedMCPClient() result = await client.call_tool("your_new_analysis_tool", { "parameter1": "test_value", "parameter2": 50 }) print(result) ## MCP Client The project includes a unified MCP client (doris_mcp_client/) for testing and integration purposes. The client supports multiple connection modes and provides a convenient interface for interacting with the MCP server. For detailed client documentation, see doris_mcp_client/README.md. ## Contributing Contributions are welcome via Issues or Pull Requests. ## License This project is licensed under the Apache 2.0 License. See the LICENSE file for details. ## FAQ ### Q: Why do Qwen3-32b and other small parameter models always fail when calling tools? A: This is a common issue. The main reason is that these models need more explicit guidance to correctly use MCP tools. It's recommended to add the following instruction prompt for the model: - Chinese version๏ผš xml ๅฐฝๅฏ่ƒฝไฝฟ็”จMCPๅทฅๅ…ทๅฎŒๆˆไปปๅŠก๏ผŒไป”็ป†้˜…่ฏปๆฏไธชๅทฅๅ…ท็š„ๆณจ่งฃใ€ๆ–นๆณ•ๅใ€ๅ‚ๆ•ฐ่ฏดๆ˜Ž็ญ‰ๅ†…ๅฎนใ€‚่ฏทๆŒ‰็…งไปฅไธ‹ๆญฅ้ชคๆ“ไฝœ๏ผš 1. ไป”็ป†ๅˆ†ๆž็”จๆˆท็š„้—ฎ้ข˜๏ผŒไปŽๅทฒๆœ‰็š„Toolsๅˆ—่กจไธญๅŒน้…ๆœ€ๅˆ้€‚็š„ๅทฅๅ…ทใ€‚ 2. ็กฎไฟๅทฅๅ…ทๅ็งฐใ€ๆ–นๆณ•ๅๅ’Œๅ‚ๆ•ฐๅฎŒๅ…จๆŒ‰็…งๅทฅๅ…ทๆณจ้‡Šไธญ็š„ๅฎšไน‰ไฝฟ็”จ๏ผŒไธ่ฆ่‡ช่กŒๅˆ›้€ ๅทฅๅ…ทๅ็งฐๆˆ–ๅ‚ๆ•ฐใ€‚ 3. ไผ ๅ…ฅๅ‚ๆ•ฐๆ—ถ๏ผŒไธฅๆ ผ้ตๅพชๅทฅๅ…ทๆณจ้‡Šไธญ่ง„ๅฎš็š„ๅ‚ๆ•ฐๆ ผๅผๅ’Œ่ฆๆฑ‚ใ€‚ 4. ่ฐƒ็”จๅทฅๅ…ทๆ—ถ๏ผŒๆ นๆฎ้œ€่ฆ็›ดๆŽฅ่ฐƒ็”จๅทฅๅ…ท๏ผŒไฝ†ๅ‚ๆ•ฐ่ฏทๆฑ‚ๅ‚่€ƒไปฅไธ‹่ฏทๆฑ‚ๆ ผๅผ๏ผš{"mcp_sse_call_tool": {"tool_name": "$tools_name", "arguments": "{}"}} 5. ่พ“ๅ‡บ็ป“ๆžœๆ—ถ๏ผŒไธ่ฆๅŒ…ๅซไปปไฝ•XMLๆ ‡็ญพ๏ผŒไป…่ฟ”ๅ›ž็บฏๆ–‡ๆœฌๅ†…ๅฎนใ€‚ ็”จๆˆท้—ฎ้ข˜๏ผšuser_query ่ฟ”ๅ›žๅทฅๅ…ท่ฐƒ็”จ็ป“ๆžœๆˆ–ๆœ€็ปˆ็ญ”ๆกˆ๏ผŒไปฅๅŠๅฏน็ป“ๆžœ็š„ๅˆ†ๆžใ€‚ - English version๏ผš xml Use MCP tools to complete tasks as much as possible. Carefully read the annotations, method names, and parameter descriptions of each tool. Please follow these steps: 1. Carefully analyze the user's question and match the most appropriate tool from the existing Tools list. 2. Ensure tool names, method names, and parameters are used exactly as defined in the tool annotations. Do not create tool names or parameters on your own. 3. When passing parameters, strictly follow the parameter format and requirements specified in the tool annotations. 4. When calling tools, call them directly as needed, but refer to the following request format for parameters: {"mcp_sse_call_tool": {"tool_name": "$tools_name", "arguments": "{}"}} 5. When outputting results, do not include any XML tags, return plain text content only. User question: user_query Return tool call results or final answer, along with analysis of the results. If you have further requirements for the returned results, you can describe the specific requirements in the `` tag. ### Q: How to configure different database connections? A: You can configure database connections in several ways: 1. Environment Variables (Recommended): bash export DORIS_HOST="your_doris_host" export DORIS_PORT="9030" export DORIS_USER="root" export DORIS_PASSWORD="your_password" 2. Command Line Arguments: bash doris-mcp-server --db-host your_host --db-port 9030 --db-user root --db-password your_password 3. Configuration File: Modify the corresponding configuration items in the .env file. ### Q: How to configure BE nodes for monitoring tools? A: Choose the appropriate configuration based on your deployment scenario: External Network (Manual Configuration): bash # Manually specify BE node addresses DORIS_BE_HOSTS=10.1.1.100,10.1.1.101,10.1.1.102 DORIS_BE_WEBSERVER_PORT=8040 Internal Network (Automatic Discovery): bash # Leave BE_HOSTS empty for auto-discovery # DORIS_BE_HOSTS= # Not set or empty # System will use 'SHOW BACKENDS' command to get internal IPs ### Q: How to use SQL Explain/Profile files with LLM for optimization? A: The tools provide both truncated content and complete files for LLM analysis: 1. Get Analysis Results: json { "content": "Truncated plan for immediate review", "file_path": "/tmp/explain_12345.txt", "is_content_truncated": true } 2. LLM Analysis Workflow: - Review truncated content for quick insights - Upload the complete file to your LLM as an attachment - Request optimization suggestions or performance analysis - Implement recommended improvements 3. Configure Content Size: bash MAX_RESPONSE_CONTENT_SIZE=4096 # Adjust as needed ### Q: How to enable data security and masking features? A: Set the following configurations in your .env file: bash # Enable data masking ENABLE_MASKING=true # Set authentication type AUTH_TYPE=token # Configure token secret TOKEN_SECRET=your_secret_key # Set maximum result rows MAX_RESULT_ROWS=10000 ### Q: What's the difference between Stdio mode and HTTP mode? A: - Stdio Mode: Suitable for direct integration with MCP clients (like Cursor), where the client manages the server process - HTTP Mode: Independent web service that supports multiple client connections, suitable for production environments Recommendations: - Development and personal use: Stdio mode - Production and multi-user environments: HTTP mode ### Q: How to resolve connection timeout issues? A: Try the following solutions: 1. Increase timeout settings: bash # Set in .env file QUERY_TIMEOUT=60 CONNECTION_TIMEOUT=30 2. Check network connectivity: bash # Test database connection curl http://localhost:3000/health 3. Optimize connection pool configuration: bash DORIS_MIN_CONNECTIONS=5 DORIS_MAX_CONNECTIONS=20 ### Q: How to resolve at_eof connection errors? (Fixed in v0.4.2) A: Version 0.4.2 has resolved the critical at_eof connection errors. The improvements include: 1. Enhanced Connection Health Monitoring: Strict connection state validation before operations 2. Automatic Retry Mechanism: Failed queries are automatically retried up to 2 times 3. Proactive Connection Cleanup: Automatic detection and cleanup of problematic connections 4. Connection Diagnostics: Comprehensive connection health analysis and reporting If you still encounter connection issues after upgrading to v0.4.2: bash # Check connection diagnostics # The system now automatically handles connection recovery # Monitor logs for connection health reports tail -f logs/doris_mcp_server.log | grep "connection" ### Q: How to resolve MCP library version compatibility issues? (Fixed in v0.4.2) A: Version 0.4.2 introduced an intelligent MCP compatibility layer that supports both MCP 1.8.x and 1.9.x versions: The Problem: - MCP 1.9.3 introduced breaking changes to the RequestContext class (changed from 2 to 3 generic parameters) - This caused TypeError: Too few arguments for RequestContext errors The Solution (v0.4.2): - Intelligent Version Detection: Automatically detects the installed MCP version - Compatibility Layer: Gracefully handles API differences between versions - Flexible Version Support: mcp>=1.8.0,<2.0.0 in dependencies Supported MCP Versions: bash # Both versions now work seamlessly pip install mcp==1.8.0 # Stable version (recommended) pip install mcp==1.9.3 # Latest version with new features Version Information: bash # Check which MCP version is being used doris-mcp-server --transport stdio # The server will log: "Using MCP version: x.x.x" If you encounter MCP-related startup errors: bash # Recommended: Use stable version pip uninstall mcp pip install mcp==1.8.0 # Or upgrade to latest compatible version pip install --upgrade mcp-doris-server==0.4.2 ### Q: How to view server logs? A: Log files are located in the logs/ directory. You can: 1. View real-time logs: bash tail -f logs/doris_mcp_server.log 2. Adjust log level: bash # Set in .env file LOG_LEVEL=DEBUG 3. Enable audit logging: bash ENABLE_AUDIT=true For other issues, please check GitHub Issues or submit a new issue.